Showing papers from CVPR 2022
We propose a theoretical framework that generalizes simple and fast algorithms for hierarchical agglomerative clustering to weighted graphs with both attractive and repulsive interactions between the nodes. This framework defines GASP, a Generalized Algorithm for Signed graph Partitioning, and allows us to explore many combinations of different linkage criteria and cannot-link constraints. We prove the equivalence of existing clustering methods to some of those combinations and introduce new algorithms for combinations that have not been studied before. We study both theoretical and empirical properties of these combinations and prove that some of these define an ultrametric on the graph. We conduct a systematic comparison of various instantiations of GASP on a large variety of both synthetic and existing signed clustering problems, in terms of accuracy but also efficiency and robustness to noise. Lastly, we show that some of the algorithms included in our framework, when combined with the predictions from a CNN model, result in a simple bottom-up instance segmentation pipeline. Going all the way from pixels to final segments with a simple procedure, we achieve state-of-the-art accuracy on the CREMI 2016 EM segmentation benchmark without requiring domain-specific superpixels.
Recently, self-attention mechanisms have shown impressive performance in various NLP and CV tasks, which can help capture sequential characteristics and derive global information. In this work, we explore how to extend self-attention modules to better learn subtle feature embeddings for recognizing fine-grained objects, e.g., different bird species or person identities. To this end, we propose a dual cross-attention learning (DCAL) algorithm to coordinate with self-attention learning. First, we propose global-local cross-attention (GLCA) to enhance the interactions between global images and local high-response regions, which can help reinforce the spatial-wise discriminative clues for recognition. Second, we propose pair-wise cross-attention (PWCA) to establish the interactions between image pairs. PWCA can regularize the attention learning of an image by treating another image as distractor and will be removed during inference. We observe that DCAL can reduce misleading attentions and diffuse the attention response to discover more complementary parts for recognition. We conduct extensive evaluations on fine-grained visual categorization and object re-identification. Experiments demonstrate that DCAL performs on par with state-of-the-art methods and consistently improves multiple self-attention baselines, e.g., surpassing DeiT-Tiny and ViT-Base by 2.8% and 2.4% mAP on MSMT17, respectively.
Recently self-supervised representation learning has drawn considerable attention from the scene text recognition community. Different from previous studies using contrastive learning, we tackle the issue from an alternative perspective, i.e., by formulating the representation learning scheme in a generative manner. Typically, the neighboring image patches among one text line tend to have similar styles, including the strokes, textures, colors, etc. Motivated by this common sense, we augment one image patch and use its neighboring patch as guidance to recover itself. Specifically, we propose a Similarity-Aware Normalization (SimAN) module to identify the different patterns and align the corresponding styles from the guiding patch. In this way, the network gains representation capability for distinguishing complex patterns such as messy strokes and cluttered backgrounds. Experiments show that the proposed SimAN significantly improves the representation quality and achieves promising performance. Moreover, we surprisingly find that our self-supervised generative network has impressive potential for data synthesis, text image editing, and font interpolation, which suggests that the proposed SimAN has a wide range of practical applications.
In machine learning, a question of great interest is understanding what examples are challenging for a model to classify. Identifying atypical examples ensures the safe deployment of models, isolates samples that require further human inspection, and provides interpretability into model behavior. In this work, we propose Variance of Gradients (VoG) as a valuable and efficient metric to rank data by difficulty and to surface a tractable subset of the most challenging examples for human-in-the-loop auditing. We show that data points with high VoG scores are far more difficult for the model to learn and over-index on corrupted or memorized examples. Further, restricting the evaluation to the test set instances with the lowest VoG improves the model's generalization performance. Finally, we show that VoG is a valuable and efficient ranking for out-of-distribution detection
Image hashing is a principled approximate nearest neighbor approach to find similar items to a query in a large collection of images. Hashing aims to learn a binary-output function that maps an image to a binary vector. For optimal retrieval performance, producing balanced hash codes with low-quantization error to bridge the gap between the learning stage's continuous relaxation and the inference stage's discrete quantization is important. However, in the existing deep supervised hashing methods, coding balance and low-quantization error are difficult to achieve and involve several losses. We argue that this is because the existing quantization approaches in these methods are heuristically constructed and not effective to achieve these objectives. This paper considers an alternative approach to learning the quantization constraints. The task of learning balanced codes with low quantization error is re-formulated as matching the learned distribution of the continuous codes to a pre-defined discrete, uniform distribution. This is equivalent to minimizing the distance between two distributions. We then propose a computationally efficient distributional distance by leveraging the discrete property of the hash functions. This distributional distance is a valid distance and enjoys lower time and sample complexities. The proposed single-loss quantization objective can be integrated into any existing supervised hashing method to improve code balance and quantization error. Experiments confirm that the proposed approach substantially improves the performance of several representative hashing methods.
Blind deblurring has attracted much interest with its wide applications in reality. The blind deblurring problem is usually solved by estimating the intermediate kernel and the intermediate image alternatively, which will finally converge to the blurring kernel of the observed image. Numerous works have been proposed to obtain intermediate images with fewer undesirable artifacts by designing delicate regularization on the latent solution. However, these methods still fail while dealing with images containing saturations and large blurs. To address this problem, we propose an intermediate image correction method which utilizes Bayes posterior estimation to screen through the intermediate image and exclude those unfavorable pixels to reduce their influence for kernel estimation. Extensive experiments have proved that the proposed method can effectively improve the accuracy of the final derived kernel against the state-of-the-art methods on benchmark datasets by both quantitative and qualitative comparisons.
Though image-level weakly supervised semantic segmentation (WSSS) has achieved great progress with Class Activation Maps (CAMs) as the cornerstone, the large supervision gap between classification and segmentation still hampers the model to generate more complete and precise pseudo masks for segmentation. In this study, we propose weakly-supervised pixel-to-prototype contrast that can provide pixel-level supervisory signals to narrow the gap. Guided by two intuitive priors, our method is executed across different views and within per single view of an image, aiming to impose cross-view feature semantic consistency regularization and facilitate intra(inter)-class compactness(dispersion) of the feature space. Our method can be seamlessly incorporated into existing WSSS models without any changes to the base networks and does not incur any extra inference burden. Extensive experiments manifest that our method consistently improves two strong baselines by large margins, demonstrating the effectiveness. Specifically, built on top of SEAM, we improve the initial seed mIoU on PASCAL VOC 2012 from 55.4% to 61.5%. Moreover, armed with our method, we increase the segmentation mIoU of EPS from 70.8% to 73.6%, achieving new state-of-the-art.
We propose a method to interactively control the animation of fluid elements in still images to generate cinemagraphs. Specifically, we focus on the animation of fluid elements like water, smoke, fire, which have the properties of repeating textures and continuous fluid motion. Taking inspiration from prior works, we represent the motion of such fluid elements in the image in the form of a constant 2D optical flow map. To this end, we allow the user to provide any number of arrow directions and their associated speeds along with a mask of the regions the user wants to animate. The user-provided input arrow directions, their corresponding speed values, and the mask are then converted into a dense flow map representing a constant optical flow map (F_D). We observe that F_D, obtained using simple exponential operations can closely approximate the plausible motion of elements in the image. We further refine computed dense optical flow map F_D using a generative-adversarial network (GAN) to obtain a more realistic flow map. We devise a novel UNet based architecture to autoregressively generate future frames using the refined optical flow map by forward-warping the input image features at different resolutions. We conduct extensive experiments on a publicly available dataset and show that our method is superior to the baselines in terms of qualitative and quantitative metrics. In addition, we show the qualitative animations of the objects in directions that did not exist in the training set and provide a way to synthesize videos that otherwise would not exist in the real world. Project url: https://controllable-cinemagraphs.github.io/
Light curtain systems are designed for detecting the presence of objects within a user-defined 3D region of space, which has many applications across vision and robotics. However, the shape of light curtains have so far been limited to ruled surfaces, i.e., surfaces composed of straight lines. In this work, we propose Holocurtains: a light-efficient approach to producing light curtains of arbitrary shape. The key idea is to synchronize a rolling-shutter camera with a 2D holographic projector, which steers (rather than block) light to generate bright structured light patterns. Our prototype projector uses a binary digital micromirror device (DMD) to generate the holographic interference patterns at high speeds. Our system produces 3D light curtains that cannot be achieved with traditional light curtain setups and thus enables all-new applications, including the ability to simultaneously capture multiple light curtains in a single frame, detect subtle changes in scene geometry, and transform any 3D surface into an optical touch interface.
Space-time memory (STM) based video object segmentation (VOS) networks usually keep increasing memory bank every several frames, which shows excellent performance. However, 1) the hardware cannot withstand the ever-increasing memory requirements as the video length increases. 2) Storing lots of information inevitably introduces lots of noise, which is not conducive to reading the most important information from the memory bank. In this paper, we propose a Recurrent Dynamic Embedding (RDE) to build a memory bank of constant size. Specifically, we explicitly generate and update RDE by the proposed Spatio-temporal Aggregation Module (SAM), which exploits the cue of historical information. To avoid error accumulation owing to the recurrent usage of SAM, we propose an unbiased guidance loss during the training stage, which makes SAM more robust in long videos. Moreover, the predicted masks in the memory bank are inaccurate due to the inaccurate network inference, which affects the segmentation of the query frame. To address this problem, we design a novel self-correction strategy so that the network can repair the embeddings of masks with different qualities in the memory bank. Extensive experiments show our method achieves the best tradeoff between performance and speed.